您现在的位置是:网站首页> 编程资料编程资料
Python图像处理库PIL详细使用说明_python_
2023-05-26
520人已围观
简介 Python图像处理库PIL详细使用说明_python_
一、 简介
1、 基本介绍
Pillow 是 Python 中较为基础的图像处理库,主要用于图像的基本处理,比如裁剪图像、调整图像大小和图像颜色处理等。与 Pillow 相比,OpenCV 和 Scikit-image 的功能更为丰富,所以使用起来也更为复杂,主要应用于机器视觉、图像分析等领域,比如众所周知的“人脸识别”应用 。
2、 特点
支持格式繁多
Pillow 支持广泛的图像格式,比如 "jpeg","png","bmp","gif","ppm","tiff" 等。同时,它也支持图像格式之间的相互转换。总之, Pillow 几乎能够处理任何格式的图像
提供丰富的功能
Pillow 提供了丰富的图像处理功能,可概括为两个方面:
- 图像归档
- 图像处理
图像归档,包括创建缩略图、生成预览图像、图像批量处理等;而图像处理,则包括调整图像大小、裁剪图像、像素点处理、添加滤镜、图像颜色处理等
配合 GUI 工具使用
官方文档:【https://www.osgeo.cn/pillow/reference/ImageFont.html】
3、 安装
pip install pillow 导包 imoprt PIL
二、 Image 对象
1、 实例化对象
1.1 实例化
导包
from PIL import Image
使用 open 方法
im = PIL.Image.open(fp) # 导入图片 im.show() # 展示图片
fp:图片路径
使用 open 方法
im = Image.new(mode,size,color) # 创建图片 im.show() # 展示图片
参数说明如下:
- mode:图像模式,字符串参数,比如 RGB(真彩图像)、L(灰度图像)、CMYK(色彩图打印模式)等
- size:图像大小,元组参数(width, height)代表图像的像素大小
- color:图片颜色,默认值为 0 表示黑色,参数值支持(R,G,B)三元组数字格式、颜色的十六进制值以及颜色英文单词
1.2 图像模式
| mode | 描述 |
|---|---|
| 1 | 1 位像素(取值范围 0-1),0表示黑,1 表示白,单色通道。 |
| L | 8 位像素(取值范围 0 -255),灰度图,单色通道。 |
| P | 8 位像素,使用调色板映射到任何其他模式,单色通道。 |
| RGB | 3 x 8位像素,真彩色,三色通道,每个通道的取值范围 0-255。 |
| RGBA | 4 x 8位像素,真彩色+透明通道,四色通道。 |
| CMYK | 4 x 8位像素,四色通道,可以适应于打印图片。 |
| YCbCr | 3 x 8位像素,彩色视频格式,三色通道。 |
| LAB | 3 x 8位像素,L * a * b颜色空间,三色通道 |
| HSV | 3 x 8位像素,色相,饱和度,值颜色空间,三色通道。 |
| I | 32 位有符号整数像素,单色通道。 |
| F | 32 位浮点像素,单色通道。 |
2、 对象属性
import PIL.Image im = PIL.Image.open(r"D:\35005\Pictures\Screenshots\微信图片_20220302175157.jpg") print(im.size) # 查看图片大小 print(im.readonly) # 查看是否为只读,1为是,0为否 print(im.format) # 查看图片的格式 print(im.info) # 查看图片的相关信息 print(im.mode) # 查看图片的模式
3、 格式转换
3.1 save 方法
save 方法用于保存 图像,当不指定文件格式时,它会以默认的图片格式来存储;如果指定图片格式,则会以指定的格式存储图片
语法:
im = PIL.Image.open(r"D:\35005\Pictures\Screenshots\微信图片_20220302175157.jpg") im.save(fp, format=None) # 保存图片
参数说明如下:
- fp:图片的存储路径,包含图片的名称,字符串格式
- format:可选参数,可以指定图片的格式
3.2 convert 方法
注意,并非所有的图片格式都可以用 save() 方法转换完成,比如将 PNG 格式的图片保存为 JPG 格式,如果直接使用 save() 方法就会出现错误
引发错误的原因是由于 PNG 和 JPG 图像模式不一致导致的。其中 PNG 是四通道 RGBA 模式,即红色、绿色、蓝色、Alpha 透明色;JPG 是三通道 RGB 模式。因此要想实现图片格式的转换,就要将 PNG 转变为三通道 RGB 模式
Image 类提供的 convert() 方法可以实现图像模式的转换。该函数提供了多个参数,比如 mode、matrix、dither 等,其中最关键的参数是 mode,其余参数无须关心
语法:
im.convert(mode, params) # 转换模式 im.save(fp) # 保存图片
参数:
- mode:指的是要转换成的图像模式
- params:其他可选参数
4、 图片缩放
在图像处理过程中经常会遇到缩小或放大图像的情况,Image 类提供的 resize() 方法能够实现任意缩小和放大图像
语法:
im_new = im.resize(size, resample=image.BICUBIC, box=None, reducing_gap=None) # 注意要重新赋值 im_new.show() # 缩放后的图片
参数:
size:元组参数 (width,height),图片缩放后的尺寸
resample:可选参数,指图像重采样滤波器,与 thumbnail() 的 resample 参数类似,默认为 Image.BICUBIC
box:对指定图片区域进行缩放,box 的参数值是长度为 4 的像素坐标元组,即 (左,上,右下)。注意,被指定的区域必须在原图的范围内,如果超出范围就会报错。当不传该参数时,默认对整个原图进行缩放
(0, 0, 120, 180)代表的是以原图的左上角为原点,选择宽和高分别是(120,180)的图像区域
reducing_gap:可选参数,浮点参数值,用于优化图片的缩放效果,常用参数值有 3.0 和 5.0
5、 创建缩略图
缩略图指的是将原图缩小至一个指定大小(size)的图像。通过创建缩略图可以使图像更易于展示和浏览
Image 对象提供了一个 thumbnail() 方法用来生图像的缩略图,等比缩放
语法:
im.thumbnail(size,resample) # 直接在原图的基础上修改 im.show() # 缩放后的图片
参数:
- size:元组参数,指的是缩小后的图像大小
- resample:可选参数,指图像重采样滤波器,有四种过滤方式,分别是 Image.BICUBIC(双立方插值法)、PIL.Image.NEAREST(最近邻插值法)、PIL.Image.BILINEAR(双线性插值法)、PIL.Image.LANCZOS(下采样过滤插值法),默认为 Image.BICUBIC
6、 图像分离与合并
图像(指数字图像)由许多像素点组成,像素是组成图像的基本单位,而每一个像素点又可以使用不同的颜色,最终呈现出了绚丽多彩的图像 ,而图像的分离与合并,指的就是图像颜色的分离和合并
6.1 split 方法
im = PIL.Image.open(r"D:\35005\Pictures\Screenshots\微信图片_20220302175157.jpg") r, g, b = im.split() # split 方法使用较简单,分离通道 r.show() g.show() b.show()
6.2 merge 方法
Image 类提供的 merge() 方法可以实现图像的合并操作。注意,图像合并,可以是单个图像合并,也可以合并两个以上的图像
im_merge = PIL.Image.merge(mode, bands) im_merge.show()
参数:
- mode:指定输出图片的模式
- bands:参数类型为元组或者列表序列,其元素值是组成图像的颜色通道,比如 RGB 分别代表三种颜色通道,可以表示为 (r, g, b)
6.3 blend 方法
Image 类也提供了 blend() 方法来混合 RGBA 模式的图片(PNG 格式)
语法:
PIL.Image.blend(image1,image2, alpha)
参数:
- image1:图片对象1
- image2:图片对象2
- alpha:透明度 ,取值范围为 0 到 1,当取值为 0 时,输出图像相当于 image1 的拷贝,而取值为 1 时,则是 image2 的拷贝,只有当取值为 0.5 时,才为两个图像的中合。因此改值的大小决定了两个图像的混合程度
7、 图像处理
7.1 图像裁剪
Image 类提供的 crop() 函数允许我们以矩形区域的方式对原图像进行裁剪
语法:
im_crop = im.crop(box=None) # box 代表裁剪区域 im_crop.show()
box 是一个有四个数字的元组参数 (x_左上,y_左下,x1_右上,y1_右下),分别表示被裁剪矩形区域的左上角 x、y 坐标和右下角 x,y 坐标。默认 (0,0) 表示坐标原点,宽度的方向为 x 轴,高度的方向为 y 轴,每个像素点代表一个单位
7.2 拷贝和粘贴
拷贝、粘贴操作几乎是成对出现的,Image 类提供了 copy() 和 paste() 方法来实现图像的复制和粘贴
拷贝语法:
im_copy = im.copy() # 复制图片
粘贴语法:
im_copy.paste(image, box=None, mask=None)
参数:
- image:指被粘贴的图片
- box:指定图片被粘贴的位置或者区域,其参数值是长度为 2 或者 4 的元组序列,长度为 2 时,表示具体的某一点 (x, y);长度为 4 则表示图片粘贴的区域,此时区域的大小必须要和被粘贴的图像大小保持一致
- mask:可选参数,为图片添加蒙版效果
注意:
- 粘贴后的图片模式将自动保持一致,不需要进行额外的转换
from PIL import Image im = Image.open(r"D:\35005\Pictures\Screenshots\微信图片_20220302175157.jpg") # 复制一张图片副本 im_copy = im.copy() # 对副本进行裁剪 im_crop = im_copy.crop((0, 0, 200, 100)) # 创建一个新的图像作为蒙版,L模式,单颜色值 image_new = Image.new('L', (200, 100), 200) # 将裁剪后的副本粘贴至副本图像上,并添加蒙版 im_copy.paste(im_crop, (100, 100, 300, 200), mask=image_new) # 显示粘贴后的图像 im_copy.show()8、几何变化
图像的几何变换主要包括图像翻转、图像旋转和图像变换操作,Image 类提供了处理这些操作的函数 transpose()、rotate() 和 transform()
8.1 transpose
该函数可以实现图像的垂直、水平翻转
语法:
im_out = im.transpose(method) # 生成新的图像对象
method取值:
- Image.FLIP_LEFT_RIGHT:左右水平翻转
- Image.FLIP_TOP_BOTTOM:上下垂直翻转
- Image.ROTATE_90:图像逆时针旋转 90 度
- Image.ROTATE_180:图像旋转 180 度
- Image.ROTATE_270:图像旋转 270 度
- Image.TRANSPOSE:图像转置
- Image.TRANSVERSE:图像横向翻转
8.2 rotate
当我们想把图像旋转任意角度时,可以使用 rotate() 函数
语法:
im_out = im.rotate(angle, resample=PIL.Image.NEAREST, expand=None, center=None, translate=None, fillcolor=None) # 返回图像对象
参数:
- angle:表示任意旋转的角度
- resample:重采样滤波器,默认为 PIL.Image.NEAREST 最近邻插值方法
- expand:可选参数,表示是否对图像进行扩展,如果参数值为 True 则扩大输出图像,如果为 False 或者省略,则表示按原图像大小输出
- center:可选参数,指定旋转中心,参数值是长度为 2 的元组,默认以图像中心进行旋转
- translate:参数值为二元组,表示对旋转后的图像进行平移,以左上角为原点;translate的参数值可以为负数
- fillcolor:可选参数,填充颜色,图像旋转后,对图像之外的区域进行填充
8.3 transform
该函数能够对图像进行变换操作,通过指定的变换方式,产生一张规定大小的新图像
语法:
im_out = im.transform(size, method, data=None, resample=0) # 返回图像对象
参数:
- size:指定新图片的大小
- method:指定图片的变化方式,比如 Image.EXTENT 表示矩形变换
- data:该参数用来给变换方式提供所需数据
- resample:图像重采样滤波器,默认参数值为 PIL.Image.NEAREST
三、 ImageFilter
1、 简介
随着数字图像技术的不断发展,图像降噪方法也日趋成熟,通过某些算法来构造滤波器是图像降噪的主要方式。滤波器能够有效抑制噪声的产生,并且不影响被处理图像的形状、大小以及原有的拓扑结构
Pillow 通过 ImageFilter 类达到图像降噪的目的,该类中集成了不同种类的滤波器,通过调用它们从而实现图像的平滑、锐化、边界增强等图像降噪操作
2、 降噪处理
2.1 图像降噪滤波器
| 名称 | 说明 |
|---|---|
| ImageFilter.BLUR | 模糊滤波,即均值滤波 |
| ImageFilter.CONTOUR | 轮廓滤波,寻找图像轮廓信息 |
| ImageFilter.DETAIL | 细节滤波,使得图像显示更加精细 |
| ImageFilter.FIND_EDGES | 寻找边界滤波(找寻图像的边界信息) |
| ImageFilter.EMBOSS | 浮雕滤波,以浮雕图的形式显示图像 |
| ImageFilter.EDGE_ENHANCE | 边界增强滤波 |
| ImageFilter.EDGE_ENHANCE_MORE | 深度边缘增强滤波 |
| ImageFilter.SMOOTH | 平滑滤波 |
| ImageFilter.SMOOTH_MORE | 深度平滑滤波 |
| ImageFilter.SHARPEN | 锐化滤波 |
| ImageFilter.GaussianBlur() | 高斯模糊 |
| ImageFilter.UnsharpMask() | 反锐化掩码滤波 |
| ImageFilter.Kernel() | 卷积核滤波 |
| ImageFilter.MinFilter(size) | 最小值滤波器,从 size 参数指定的区域中选择最小像素值,然后将其存储至输出图像中。 |
| ImageFilter.MedianFilter(size) | 中值滤波器,从 size 参数指定的区域中选择中值像素值,然后将其存储至输出图像中。 |
| ImageFilter.MaxFilter(size) | 最大值滤波器 |
| ImageFilter.ModeFilter() | 模式滤波 |
2.2 使用语法
语法:
im_ft = im.filter
相关内容
- Python可变与不可变数据和深拷贝与浅拷贝_python_
- Python 全局空间和局部空间_python_
- Selenium浏览器自动化如何上传文件_python_
- 在Python 中将类对象序列化为JSON_python_
- Python中itertools库的四个函数介绍_python_
- Python图片存储和访问的三种方式详解_python_
- python数组的复制与列表中的pop_python_
- Python生成可执行文件之PyInstaller库的使用方式_python_
- Python中输入若干整数以逗号间隔实现统计每个整数出现次数_python_
- Pytorch上下采样函数之F.interpolate数组采样操作详解_python_
点击排行
本栏推荐
